9.17. Arrays🔗

The Array type represents sequences of elements, addressable by their position in the sequence. Arrays are specially supported by Lean:

  • They have a logical model that specifies their behavior in terms of lists of elements, which specifies the meaning of each operation on arrays.

  • They have an optimized run-time representation in compiled code as dynamic arrays, and the Lean runtime specially optimizes array operations.

  • There is array literal syntax for writing strings.

Arrays can be vastly more efficient than lists or other sequences in compiled code. In part, this is because they offer good locality: because all the elements of the sequence are next to each other in memory, the processor's caches can be used efficiently. Even more importantly, if there is only a single reference to an array, operations that might otherwise copy or allocate a data structure can be implemented via mutation. Lean code that uses an array in such a way that there's only ever one unique reference (that is, uses it linearly) avoids the performance overhead of persistent data structures while still being as convenient to write, read, and prove things about as ordinary pure functional programs.

9.17.1. Logical Model

🔗structure
Array.{u} (α : Type u) : Type u

Array α is the type of dynamic arrays with elements from α. This type has special support in the runtime.

An array has a size and a capacity; the size is Array.size but the capacity is not observable from Lean code. Arrays perform best when unshared; as long as they are used "linearly" all updates will be performed destructively on the array, so it has comparable performance to mutable arrays in imperative programming languages.

From the point of view of proofs Array α is just a wrapper around List α.

Constructor

Array.mk.{u}

Converts a List α into an Array α.

You can also use the synonym List.toArray when dot notation is convenient.

At runtime, this constructor is implemented by List.toArrayImpl and is O(n) in the length of the list.

Fields

toList : List α

Converts a Array α into an List α.

At runtime, this projection is implemented by Array.toListImpl and is O(n) in the length of the array.

The logical model of arrays is a structure that contains a single field, which is a list of elements. This is convenient when specifying and proving properties of array-processing functions at a low level.

9.17.2. Run-Time Representation🔗

Lean's arrays are dynamic arrays, which are blocks of continuous memory with a defined capacity, not all of which is typically in use. As long as the number of elements in the array is less than the capacity, new items can be added to the end without reallocating or moving the data. Adding items to an array that has no extra space results in a reallocation that doubles the capacity. The amortized overhead scales linearly with the size of the array. The values in the array are represented as described in the section on the foreign function interface.

Memory layout of arrays

After the object header, an array contains:

size

The number of objects currently stored in the array

capacity

The number of objects that fit in the memory allocated for the array

data

The values in the array

Many array functions in the Lean runtime check whether they have exclusive access to their argument by consulting the reference count in the object header. If they do, and the array's capacity is sufficient, then the existing array can be mutated rather than allocating fresh memory. Otherwise, a new array must be allocated.

9.17.2.1. Performance Notes🔗

Despite the fact that they appear to be an ordinary constructor and projection, Array.mk and Array.data take time linear in the size of the array in compiled code. This is because they must implement the conversions between linked lists and packed arrays, which must necessarily visit each element.

Mutable arrays can be used to write very efficient code. However, they are a poor persistent data structure. Updating a shared array rules out mutation, and requires time linear in the size of the array. When using arrays in performance-critical code, it's important to ensure that they are used linearly.

9.17.3. Syntax🔗

Array literals allow arrays to be written directly in code. They may be used in expression or pattern contexts.

syntax

Array literals begin with #[ and contain a comma-separated sequence of terms, terminating with ].

term ::= ...
    | #[term,*]
Array Literals

Array literals may be used as expressions or as patterns.

def oneTwoThree : Array Nat := #[1, 2, 3] some 2#eval match oneTwoThree with | #[x, y, z] => some ((x + z) / y) | _ => none

Additionally, sub-arrays may be extracted using the following syntax:

syntax

A start index followed by a colon constructs a sub-array that contains the values from the start index onwards (inclusive):

term ::= ...
    | term[term :]

Providing start and end indices constructs a sub-array that contains the values from the start index (inclusive) to the end index (exclusive):

term ::= ...
    | term[term : term]
Sub-array Syntax

The array ten contains the first ten natural numbers.

def ten : Array Nat := .range 10

A sub-array that represents the second half of ten can be constructed using the sub-array syntax:

#[5, 6, 7, 8, 9].toSubarray#eval ten[5:]
#[5, 6, 7, 8, 9].toSubarray

Similarly, sub-array that contains two through five can be constructed by providing a stopping point:

#[2, 3, 4, 5].toSubarray#eval ten[2:6]
#[2, 3, 4, 5].toSubarray

Because sub-arrays merely store the start and end indices of interest in the underlying array, the array itself can be recovered:

true#eval ten[2:6].array == ten
true

9.17.4. API Reference🔗

9.17.4.1. Constructing Arrays

🔗def
Array.empty.{u} {α : Type u} : Array α

Construct a new empty array.

🔗def
Array.singleton.{u} {α : Type u} (v : α)
    : Array α
🔗def
Array.range (n : Nat) : Array Nat

The array #[0, 1, ..., n - 1].

🔗def
Array.ofFn.{u} {α : Type u} {n : Nat}
    (f : Fin nα) : Array α

ofFn f with f : Fin n → α returns the list whose ith element is f i.

ofFn f = #[f 0, f 1, ... , f(n - 1)]
🔗def
Array.mkArray.{u} {α : Type u} (n : Nat) (v : α)
    : Array α
🔗def
Array.append.{u} {α : Type u} (as bs : Array α)
    : Array α
🔗def
Array.appendList.{u} {α : Type u} (as : Array α)
    (bs : List α) : Array α

9.17.4.2. Size

🔗def
Array.size.{u} {α : Type u} (a : Array α) : Nat

Get the size of an array. This is a cached value, so it is O(1) to access.

🔗def
Array.usize.{u} {α : Type u} (a : Array α)
    : USize

Low-level version of size that directly queries the C array object cached size. While this is not provable, usize always returns the exact size of the array since the implementation only supports arrays of size less than USize.size.

🔗def
Array.isEmpty.{u} {α : Type u} (a : Array α)
    : Bool

9.17.4.3. Lookups

🔗def
Array.extract.{u_1} {α : Type u_1}
    (as : Array α) (start stop : Nat) : Array α

Returns the slice of as from indices start to stop (exclusive). If start is greater or equal to stop, the result is empty. If stop is greater than the length of as, the length is used instead.

🔗def
Array.get.{u} {α : Type u} (a : Array α)
    (i : Nat) (h : i < a.size) : α

Access an element from an array without needing a runtime bounds checks, using a Nat index and a proof that it is in bounds.

This function does not use get_elem_tactic to automatically find the proof that the index is in bounds. This is because the tactic itself needs to look up values in arrays. Use the indexing notation a[i] instead.

🔗def
Array.get?.{u} {α : Type u} (a : Array α)
    (i : Nat) : Option α
🔗def
Array.getIdx?.{u} {α : Type u} [BEq α]
    (a : Array α) (v : α) : Option Nat
🔗def
Array.getD.{u_1} {α : Type u_1} (a : Array α)
    (i : Nat) (v₀ : α) : α

Access an element from an array, or return v₀ if the index is out of bounds.

🔗def
Array.get!.{u} {α : Type u} [Inhabited α]
    (a : Array α) (i : Nat) : α

Access an element from an array, or panic if the index is out of bounds.

🔗def
Array.uget.{u} {α : Type u} (a : Array α)
    (i : USize) (h : i.toNat < a.size) : α

Low-level version of fget which is as fast as a C array read. Fin values are represented as tag pointers in the Lean runtime. Thus, fget may be slightly slower than uget.

🔗def
Array.back?.{u} {α : Type u} (a : Array α)
    : Option α
🔗def
Array.back!.{u} {α : Type u} [Inhabited α]
    (a : Array α) : α
🔗def
Array.back.{u_1} {α : Type u_1} [Inhabited α]
    (a : Array α) : α
🔗def
Array.getMax?.{u} {α : Type u} (as : Array α)
    (lt : ααBool) : Option α

9.17.4.4. Conversions

🔗def
Array.toList.{u} {α : Type u} (self : Array α)
    : List α

Converts a Array α into an List α.

At runtime, this projection is implemented by Array.toListImpl and is O(n) in the length of the array.

🔗def
Array.toListRev.{u_1} {α : Type u_1}
    (arr : Array α) : List α

A more efficient version of arr.toList.reverse.

🔗def
Array.toListAppend.{u} {α : Type u}
    (as : Array α) (l : List α) : List α

Prepends an Array α onto the front of a list. Equivalent to as.toList ++ l.

🔗def
Array.toSubarray.{u} {α : Type u} (as : Array α)
  (start : Nat := 0) (stop : Nat := as.size) :
  Subarray α
🔗def
Array.ofSubarray.{u} {α : Type u}
    (s : Subarray α) : Array α
🔗def
Array.toPArray'.{u} {α : Type u} (xs : Array α)
    : Lean.PersistentArray α

9.17.4.5. Modification

🔗def
Array.push.{u} {α : Type u} (a : Array α)
    (v : α) : Array α

Push an element onto the end of an array. This is amortized O(1) because Array α is internally a dynamic array.

🔗def
Array.pop.{u} {α : Type u} (a : Array α)
    : Array α
🔗def
Array.popWhile.{u} {α : Type u} (p : αBool)
    (as : Array α) : Array α
🔗def
Array.erase.{u} {α : Type u} [BEq α]
    (as : Array α) (a : α) : Array α
🔗def
Array.eraseIdx.{u} {α : Type u} (a : Array α)
  (i : Nat)
  (h : i < a.size := by get_elem_tactic) :
  Array α

Remove the element at a given index from an array without a runtime bounds checks, using a Nat index and a tactic-provided bound.

This function takes worst case O(n) time because it has to backshift all elements at positions greater than i.

🔗def
Array.eraseReps.{u_1} {α : Type u_1} [BEq α]
    (as : Array α) : Array α

O(|l|). Erase repeated adjacent elements. Keeps the first occurrence of each run.

  • eraseReps #[1, 3, 2, 2, 2, 3, 5] = #[1, 3, 2, 3, 5]

🔗def
Array.swap.{u} {α : Type u} (a : Array α)
  (i j : Nat)
  (hi : i < a.size := by get_elem_tactic)
  (hj : j < a.size := by get_elem_tactic) :
  Array α

Swaps two entries in an array.

This will perform the update destructively provided that a has a reference count of 1 when called.

🔗def
Array.swap!.{u_1} {α : Type u_1} (a : Array α)
    (i j : Nat) : Array α
🔗def
Array.swapAt.{u} {α : Type u} (a : Array α)
  (i : Nat) (v : α)
  (hi : i < a.size := by get_elem_tactic) :
  α × Array α
🔗def
Array.swapAt!.{u} {α : Type u} (a : Array α)
    (i : Nat) (v : α) : α × Array α
🔗def
Array.set.{u_1} {α : Type u_1} (a : Array α)
  (i : Nat) (v : α)
  (h : i < a.size := by get_elem_tactic) :
  Array α

Set an element in an array, using a proof that the index is in bounds. (This proof can usually be omitted, and will be synthesized automatically.)

This will perform the update destructively provided that a has a reference count of 1 when called.

🔗def
Array.set!.{u_1} {α : Type u_1} (a : Array α)
    (i : Nat) (v : α) : Array α

Set an element in an array, or panic if the index is out of bounds.

This will perform the update destructively provided that a has a reference count of 1 when called.

🔗def
Array.setD.{u_1} {α : Type u_1} (a : Array α)
    (i : Nat) (v : α) : Array α
🔗def
Array.uset.{u} {α : Type u} (a : Array α)
    (i : USize) (v : α) (h : i.toNat < a.size)
    : Array α

Low-level version of fset which is as fast as a C array fset. Fin values are represented as tag pointers in the Lean runtime. Thus, fset may be slightly slower than uset.

🔗def
Array.modify.{u} {α : Type u} (a : Array α)
    (i : Nat) (f : αα) : Array α
🔗def
Array.modifyM.{u, u_1} {α : Type u}
    {m : Type uType u_1} [Monad m]
    (a : Array α) (i : Nat) (f : αm α)
    : m (Array α)
🔗def
Array.modifyOp.{u} {α : Type u} (self : Array α)
    (idx : Nat) (f : αα) : Array α
🔗def
Array.insertAt.{u_1} {α : Type u_1}
    (as : Array α) (i : Nat) (a : α)
    : autoParam (ias.size) _auto✝Array α
🔗def
Array.insertAt!.{u_1} {α : Type u_1}
    (as : Array α) (i : Nat) (a : α) : Array α
🔗def
Array.reverse.{u} {α : Type u} (as : Array α)
    : Array α
🔗def
Array.binInsertM.{u, v} {α : Type u}
    {m : Type uType v} [Monad m]
    (lt : ααBool) (merge : αm α)
    (add : Unitm α) (as : Array α) (k : α)
    : m (Array α)
🔗def
Array.take.{u} {α : Type u} (a : Array α)
    (n : Nat) : Array α

take a n returns the first n elements of a.

🔗def
Array.takeWhile.{u} {α : Type u} (p : αBool)
    (as : Array α) : Array α
🔗def
Array.flatten.{u} {α : Type u}
    (as : Array (Array α)) : Array α

Joins array of array into a single array.

flatten #[#[a₁, a₂, ⋯], #[b₁, b₂, ⋯], ⋯] = #[a₁, a₂, ⋯, b₁, b₂, ⋯]

🔗def
Array.getEvenElems.{u} {α : Type u}
    (as : Array α) : Array α

9.17.4.6. Sorted Arrays

🔗def
Array.qsort.{u_1} {α : Type u_1} (as : Array α)
  (lt : ααBool := by exact (· < ·))
  (low : Nat := 0) (high : Nat := as.size - 1) :
  Array α
🔗def
Array.qsortOrd.{u_1} {α : Type u_1}
  [ord : Ord α] (xs : Array α) : Array α

Sort an array using compare to compare elements.

🔗def
Array.insertionSort.{u_1} {α : Type u_1}
  (a : Array α)
  (lt : ααBool := by exact (· < ·)) :
  Array α
🔗def
Array.binInsert.{u} {α : Type u}
    (lt : ααBool) (as : Array α) (k : α)
    : Array α
🔗def
Array.binSearch {α : Type} (as : Array α)
  (k : α) (lt : ααBool) (lo : Nat := 0)
  (hi : Nat := as.size - 1) : Option α
🔗def
Array.binSearchContains {α : Type}
  (as : Array α) (k : α) (lt : ααBool)
  (lo : Nat := 0) (hi : Nat := as.size - 1) :
  Bool

9.17.4.7. Iteration

🔗def
Array.foldr.{u, v} {α : Type u} {β : Type v}
  (f : αββ) (init : β) (as : Array α)
  (start : Nat := as.size) (stop : Nat := 0) : β
🔗def
Array.foldrM.{u, v, w} {α : Type u} {β : Type v}
  {m : Type vType w} [Monad m]
  (f : αβm β) (init : β) (as : Array α)
  (start : Nat := as.size) (stop : Nat := 0) :
  m β

Reference implementation for foldrM

🔗def
Array.foldl.{u, v} {α : Type u} {β : Type v}
  (f : βαβ) (init : β) (as : Array α)
  (start : Nat := 0) (stop : Nat := as.size) : β
🔗def
Array.foldlM.{u, v, w} {α : Type u} {β : Type v}
  {m : Type vType w} [Monad m]
  (f : βαm β) (init : β) (as : Array α)
  (start : Nat := 0) (stop : Nat := as.size) :
  m β

Reference implementation for foldlM

🔗def
Array.forM.{u, v, w} {α : Type u}
  {m : Type vType w} [Monad m]
  (f : αm PUnit) (as : Array α)
  (start : Nat := 0) (stop : Nat := as.size) :
  m PUnit
🔗def
Array.forRevM.{u, v, w} {α : Type u}
  {m : Type vType w} [Monad m]
  (f : αm PUnit) (as : Array α)
  (start : Nat := as.size) (stop : Nat := 0) :
  m PUnit
🔗def
Array.forIn'.{u, v, w} {α : Type u} {β : Type v}
    {m : Type vType w} [Monad m]
    (as : Array α) (b : β)
    (f : (a : α) → aasβm (ForInStep β))
    : m β

Reference implementation for forIn'

9.17.4.8. Transformation

🔗def
Array.concatMap.{u_1, u_2} {α : Type u_1}
    {β : Type u_2} (f : αArray β)
    (as : Array α) : Array β
🔗def
Array.concatMapM.{u_1, u_2, u_3} {α : Type u_1}
    {m : Type u_2Type u_3} {β : Type u_2}
    [Monad m] (f : αm (Array β))
    (as : Array α) : m (Array β)
🔗def
Array.zip.{u, u_1} {α : Type u} {β : Type u_1}
    (as : Array α) (bs : Array β)
    : Array (α × β)
🔗def
Array.zipWith.{u, u_1, u_2} {α : Type u}
    {β : Type u_1} {γ : Type u_2} (as : Array α)
    (bs : Array β) (f : αβγ) : Array γ
🔗def
Array.zipWithIndex.{u} {α : Type u}
    (arr : Array α) : Array (α × Nat)

Turns #[a, b] into #[(a, 0), (b, 1)].

🔗def
Array.unzip.{u, u_1} {α : Type u} {β : Type u_1}
    (as : Array (α × β)) : Array α × Array β
🔗def
Array.map.{u, v} {α : Type u} {β : Type v}
    (f : αβ) (as : Array α) : Array β
🔗def
Array.mapMono.{u_1} {α : Type u_1}
    (as : Array α) (f : αα) : Array α
🔗def
Array.mapM.{u, v, w} {α : Type u} {β : Type v}
    {m : Type vType w} [Monad m]
    (f : αm β) (as : Array α) : m (Array β)

Reference implementation for mapM

🔗def
Array.mapM'.{u_1, u_2, u_3}
    {m : Type u_1Type u_2} {α : Type u_3}
    {β : Type u_1} [Monad m] (f : αm β)
    (as : Array α)
    : m { bs // bs.size = as.size }
🔗def
Array.mapMonoM.{u_1, u_2}
    {m : Type u_1Type u_2} {α : Type u_1}
    [Monad m] (as : Array α) (f : αm α)
    : m (Array α)

Monomorphic Array.mapM. The internal implementation uses pointer equality, and does not allocate a new array if the result of each f a is a pointer equal value a.

🔗def
Array.mapIdx.{u, v} {α : Type u} {β : Type v}
    (f : Natαβ) (as : Array α) : Array β
🔗def
Array.mapIdxM.{u, v, w} {α : Type u}
    {β : Type v} {m : Type vType w} [Monad m]
    (f : Natαm β) (as : Array α)
    : m (Array β)
🔗def
Array.mapFinIdx.{u, v} {α : Type u} {β : Type v}
    (as : Array α) (f : Fin as.size → αβ)
    : Array β

Variant of mapIdx which receives the index as a Fin as.size.

🔗def
Array.mapIndexed.{u_1, u_2} {α : Type u_1}
    {β : Type u_2} (arr : Array α)
    (f : Fin arr.size → αβ) : Array β
🔗def
Array.mapIndexedM.{u_1, u_2, u_3}
    {m : Type u_1Type u_2} {α : Type u_3}
    {β : Type u_1} [Monad m] (arr : Array α)
    (f : Fin arr.size → αm β) : m (Array β)
🔗def
Array.mapFinIdxM.{u, v, w} {α : Type u}
    {β : Type v} {m : Type vType w} [Monad m]
    (as : Array α) (f : Fin as.size → αm β)
    : m (Array β)

Variant of mapIdxM which receives the index as a Fin as.size.

🔗def
Array.flatMap.{u, u_1} {α : Type u}
    {β : Type u_1} (f : αArray β)
    (as : Array α) : Array β
🔗def
Array.flatMapM.{u, u_1, u_2} {α : Type u}
    {m : Type u_1Type u_2} {β : Type u_1}
    [Monad m] (f : αm (Array β))
    (as : Array α) : m (Array β)
🔗def
Array.sequenceMap.{u_1, u_2, u_3} {α : Type u_1}
    {β : Type u_2} {m : Type u_2Type u_3}
    [Monad m] (f : αm β) (as : Array α)
    : m (Array β)

9.17.4.9. Filtering

🔗def
Array.filterMap.{u, u_1} {α : Type u}
  {β : Type u_1} (f : αOption β)
  (as : Array α) (start : Nat := 0)
  (stop : Nat := as.size) : Array β
🔗def
Array.filter.{u} {α : Type u} (p : αBool)
  (as : Array α) (start : Nat := 0)
  (stop : Nat := as.size) : Array α
🔗def
Array.filterM.{u_1} {m : Type → Type u_1}
  {α : Type} [Monad m] (p : αm Bool)
  (as : Array α) (start : Nat := 0)
  (stop : Nat := as.size) : m (Array α)
🔗def
Array.filterMapM.{u, u_1, u_2} {α : Type u}
  {m : Type u_1Type u_2} {β : Type u_1}
  [Monad m] (f : αm (Option β))
  (as : Array α) (start : Nat := 0)
  (stop : Nat := as.size) : m (Array β)
🔗def
Array.filterPairsM.{u_1} {m : Type → Type u_1}
    [Monad m] {α : Type} (a : Array α)
    (f : ααm (Bool × Bool)) : m (Array α)

Given an array a, runs f xᵢ xⱼ for all i < j, removes those entries for which f returns false (and will subsequently skip pairs if one element is removed), and returns the array of remaining elements.

This can be used to remove elements from an array where a “better” element, in some partial order, exists in the array.

🔗def
Array.filterSepElems (a : Array Lean.Syntax)
    (p : Lean.SyntaxBool) : Array Lean.Syntax
🔗def
Array.filterSepElemsM {m : Type → Type}
    [Monad m] (a : Array Lean.Syntax)
    (p : Lean.Syntaxm Bool)
    : m (Array Lean.Syntax)

9.17.4.10. Partitioning

🔗def
Array.split.{u} {α : Type u} (as : Array α)
    (p : αBool) : Array α × Array α
🔗def
Array.partition.{u} {α : Type u} (p : αBool)
    (as : Array α) : Array α × Array α
🔗def
Array.groupByKey.{u, v} {α : Type u}
    {β : Type v} [BEq α] [Hashable α]
    (key : βα) (xs : Array β)
    : Std.HashMap α (Array β)

Groups all elements x, y in xs with key x == key y into the same array (xs.groupByKey key).find! (key x). Groups preserve the relative order of elements in xs.

9.17.4.11. Element Predicates

🔗def
Array.contains.{u} {α : Type u} [BEq α]
    (as : Array α) (a : α) : Bool
🔗def
Array.elem.{u} {α : Type u} [BEq α] (a : α)
    (as : Array α) : Bool
🔗def
Array.indexOf?.{u} {α : Type u} [BEq α]
    (a : Array α) (v : α) : Option (Fin a.size)
🔗def
Array.find? {α : Type} (p : αBool)
    (as : Array α) : Option α
🔗def
Array.findRev? {α : Type} (p : αBool)
    (as : Array α) : Option α
🔗def
Array.findIdx?.{u} {α : Type u} (p : αBool)
    (as : Array α) : Option Nat
🔗def
Array.findM? {α : Type} {m : Type → Type}
    [Monad m] (p : αm Bool) (as : Array α)
    : m (Option α)
🔗def
Array.findRevM?.{w} {α : Type}
    {m : Type → Type w} [Monad m]
    (p : αm Bool) (as : Array α)
    : m (Option α)
🔗def
Array.findIdxM?.{u, u_1} {α : Type u}
    {m : Type → Type u_1} [Monad m]
    (p : αm Bool) (as : Array α)
    : m (Option Nat)
🔗def
Array.findSomeM?.{u, v, w} {α : Type u}
    {β : Type v} {m : Type vType w} [Monad m]
    (f : αm (Option β)) (as : Array α)
    : m (Option β)
🔗def
Array.findSomeRev?.{u, v} {α : Type u}
    {β : Type v} (f : αOption β)
    (as : Array α) : Option β
🔗def
Array.findSomeRevM?.{u, v, w} {α : Type u}
    {β : Type v} {m : Type vType w} [Monad m]
    (f : αm (Option β)) (as : Array α)
    : m (Option β)
🔗def
Array.all.{u} {α : Type u} (as : Array α)
  (p : αBool) (start : Nat := 0)
  (stop : Nat := as.size) : Bool
🔗def
Array.allM.{u, w} {α : Type u}
  {m : Type → Type w} [Monad m] (p : αm Bool)
  (as : Array α) (start : Nat := 0)
  (stop : Nat := as.size) : m Bool
🔗def
Array.allDiff.{u} {α : Type u} [BEq α]
    (as : Array α) : Bool
🔗def
Array.any.{u} {α : Type u} (as : Array α)
  (p : αBool) (start : Nat := 0)
  (stop : Nat := as.size) : Bool
🔗def
Array.anyM.{u, w} {α : Type u}
  {m : Type → Type w} [Monad m] (p : αm Bool)
  (as : Array α) (start : Nat := 0)
  (stop : Nat := as.size) : m Bool
🔗def
Array.isEqv.{u} {α : Type u} (a b : Array α)
    (p : ααBool) : Bool
🔗def
Array.findSome?.{u, v} {α : Type u} {β : Type v}
    (f : αOption β) (as : Array α) : Option β
🔗def
Array.findSome!.{u, v} {α : Type u} {β : Type v}
    [Inhabited β] (f : αOption β)
    (a : Array α) : β

9.17.4.12. Comparisons

🔗def
Array.isPrefixOf.{u} {α : Type u} [BEq α]
    (as bs : Array α) : Bool

Return true iff as is a prefix of bs. That is, bs = as ++ t for some t : List α.

9.17.4.13. Termination Helpers

🔗def
Array.attach.{u_1} {α : Type u_1} (xs : Array α)
    : Array { x // xxs }

O(1). "Attach" the proof that the elements of xs are in xs to produce a new array with the same elements but in the type {x // x ∈ xs}.

🔗def
Array.attachWith.{u_1} {α : Type u_1}
    (xs : Array α) (P : α → Prop)
    (H : ∀ (x : α), xxsP x)
    : Array { x // P x }

O(1). "Attach" a proof P x that holds for all the elements of xs to produce a new array with the same elements but in the type {x // P x}.

🔗def
Array.unattach.{u_1} {α : Type u_1}
    {p : α → Prop} (l : Array { x // p x })
    : Array α

A synonym for l.map (·.val). Mostly this should not be needed by users. It is introduced as in intermediate step by lemmas such as map_subtype, and is ideally subsequently simplified away by unattach_attach.

If not, usually the right approach is simp [Array.unattach, -Array.map_subtype] to unfold.

9.17.4.14. Proof Automation

🔗def
Array.reduceOption.{u} {α : Type u}
    (as : Array (Option α)) : Array α

Drop nones from a Array, and replace each remaining some a with a.

🔗def
Array.reduceGetElem : Lean.Meta.Simp.DSimproc

Simplification procedure for #[...][n] for n a Nat literal.

🔗def
Array.reduceGetElem? : Lean.Meta.Simp.DSimproc

Simplification procedure for #[...][n]? for n a Nat literal.

🔗def
Array.reduceGetElem! : Lean.Meta.Simp.DSimproc

Simplification procedure for #[...][n]! for n a Nat literal.

9.17.5. Sub-Arrays🔗

🔗structure
Subarray.{u} (α : Type u) : Type u

Constructor

Subarray.mk.{u}

Fields

array : Array α
start : Nat
stop : Nat
start_le_stop : self.startself.stop
stop_le_array_size : self.stopself.array.size
🔗def
Subarray.toArray.{u_1} {α : Type u_1}
    (s : Subarray α) : Array α
🔗def
Subarray.empty.{u_1} {α : Type u_1} : Subarray α

The empty subarray.

9.17.5.1. Size

🔗def
Subarray.size.{u_1} {α : Type u_1}
    (s : Subarray α) : Nat

9.17.5.2. Resizing

🔗def
Subarray.drop.{u_1} {α : Type u_1}
    (arr : Subarray α) (i : Nat) : Subarray α

Removes the first i elements of the subarray. If there are i or fewer elements, the resulting subarray is empty.

🔗def
Subarray.take.{u_1} {α : Type u_1}
    (arr : Subarray α) (i : Nat) : Subarray α

Keeps only the first i elements of the subarray. If there are i or fewer elements, the resulting subarray is empty.

🔗def
Subarray.popFront.{u_1} {α : Type u_1}
    (s : Subarray α) : Subarray α
🔗def
Subarray.split.{u_1} {α : Type u_1}
    (s : Subarray α) (i : Fin s.size.succ)
    : Subarray α × Subarray α

Splits a subarray into two parts.

9.17.5.3. Lookups

🔗def
Subarray.get.{u_1} {α : Type u_1}
    (s : Subarray α) (i : Fin s.size) : α
🔗def
Subarray.get!.{u_1} {α : Type u_1} [Inhabited α]
    (s : Subarray α) (i : Nat) : α
🔗def
Subarray.getD.{u_1} {α : Type u_1}
    (s : Subarray α) (i : Nat) (v₀ : α) : α

9.17.5.4. Iteration

🔗def
Subarray.foldl.{u, v} {α : Type u} {β : Type v}
    (f : βαβ) (init : β) (as : Subarray α)
    : β
🔗def
Subarray.foldlM.{u, v, w} {α : Type u}
    {β : Type v} {m : Type vType w} [Monad m]
    (f : βαm β) (init : β)
    (as : Subarray α) : m β
🔗def
Subarray.foldr.{u, v} {α : Type u} {β : Type v}
    (f : αββ) (init : β) (as : Subarray α)
    : β
🔗def
Subarray.foldrM.{u, v, w} {α : Type u}
    {β : Type v} {m : Type vType w} [Monad m]
    (f : αβm β) (init : β)
    (as : Subarray α) : m β
🔗def
Subarray.forM.{u, v, w} {α : Type u}
    {m : Type vType w} [Monad m]
    (f : αm PUnit) (as : Subarray α)
    : m PUnit
🔗def
Subarray.forRevM.{u, v, w} {α : Type u}
    {m : Type vType w} [Monad m]
    (f : αm PUnit) (as : Subarray α)
    : m PUnit
🔗opaque
Subarray.forIn.{u, v, w} {α : Type u}
    {β : Type v} {m : Type vType w} [Monad m]
    (s : Subarray α) (b : β)
    (f : αβm (ForInStep β)) : m β

9.17.5.5. Element Predicates

🔗def
Subarray.findRev? {α : Type} (as : Subarray α)
    (p : αBool) : Option α
🔗def
Subarray.findRevM?.{w} {α : Type}
    {m : Type → Type w} [Monad m]
    (as : Subarray α) (p : αm Bool)
    : m (Option α)
🔗def
Subarray.findSomeRevM?.{u, v, w} {α : Type u}
    {β : Type v} {m : Type vType w} [Monad m]
    (as : Subarray α) (f : αm (Option β))
    : m (Option β)
🔗def
Subarray.all.{u} {α : Type u} (p : αBool)
    (as : Subarray α) : Bool
🔗def
Subarray.allM.{u, w} {α : Type u}
    {m : Type → Type w} [Monad m]
    (p : αm Bool) (as : Subarray α) : m Bool
🔗def
Subarray.any.{u} {α : Type u} (p : αBool)
    (as : Subarray α) : Bool
🔗def
Subarray.anyM.{u, w} {α : Type u}
    {m : Type → Type w} [Monad m]
    (p : αm Bool) (as : Subarray α) : m Bool

9.17.6. FFI🔗

FFI type
typedef struct {
    lean_object   m_header;
    size_t        m_size;
    size_t        m_capacity;
    lean_object * m_data[];
} lean_array_object;

The representation of arrays in C. See the description of run-time Arrays for more details.

FFI function
bool lean_is_array(lean_object * o)

Returns true if o is an array, or false otherwise.

FFI function
lean_array_object * lean_to_array(lean_object * o)

Performs a runtime check that o is indeed an array. If o is not an array, an assertion fails.

Planned Content
  • Complete C API for Array

Tracked at issue #158